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ABSTRACT 

Faults in wind turbines can lead to reduced energy generation and increased maintenance costs. This research fo- 

cuses on detecting faults in wind turbines by analyzing the rotor bearing temperature using machine learning 

algorithms such as K-nearest neighbor (KNN) regression and K-means clustering. SCADA dataset with 15 

features was selected, pre-processed, and used to evaluate the KNN regression using various metrics. The results 

obtained depict a high accuracy of 98.002% with a mean absolute error of 0.9300 and a mean squared error of 

1.7776, while the residuals plot indicated a normal distribution with most of the points near zero, which suggests 

that the model is suitable for predicting rotor bearing temperature. The KNN regression results were used to 

identify potential gearbox faults through K-means clustering, with a silhouette score of 0.6221. This study 

demonstrates the potential use of KNN regression and K-means clustering for detecting faults in wind turbine 

gearbox by analyzing rotor bearing temperature data. 
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INTRODUCTION 

The increasing use of wind energy as a clean and sustainable source of electricity has led to the growth of the 

wind energy industry. Offshore wind turbines, in particular, are becoming an important source of renewable 

energy with a projected global capacity of over 1 TW by 2030[1]. However, the harsh marine environment in 

which these turbines operate can result in increased wear and tear which further results in a higher maintenance 

cost along with various other risks. In such a situation it becomes essential to predict faults early to ensure the 

safe and efficient operation of offshore wind turbines. 

One of the key areas of research in this field is the use of condition monitoring and diagnosis systems, with the 

help of AI-based techniques[2-4], this method has the potential to reduce the operation and maintenance costs of 

offshore wind 

farms by up to 50%. The gearbox, being a critical component of a wind turbine, plays a crucial role in its overall 

efficiency and reliability. Early detection of faults in the gearbox can thereby ensure the reliable operation of 

wind turbines [7]. 

SCADA (Supervisory Control and Data Acquisition) sys- tems, which use sensors and other devices to collect 

data from various points within the process, including the gearbox, and transmit it to a central computer for 

analysis and control. The use of SCADA data for fault detection in wind turbines has the potential to improve 

their reliability and efficiency by enabling earlier and more accurate fault detection. This paper provides an 

overview of the use of SCADA data for wind turbine gearbox fault detection using rotor bearing temperature and 

the potential benefits of this approach. 

In this study, 10 minute averaged SCADA data containing data collected from 15 wind turbines of capacity 2 

MW each has been utilized to train a generic machine learning model to predict the rotor bearing temperature, 
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thereby predicting gearbox faults. 

 

 

LITERATURE REVIEW 

Gearbox failures in wind turbines can result in significant downtime and repair costs for wind turbine operators 

[8]. To minimize these costs, it is important to predict gearbox faults as early as possible. Rotor bearing 

temperature is a direct and accurate measurement of gearbox health and can provide valuable information about 

the location and nature of faults within the gearbox [11]. 

Several data collection approaches like SCADA data, vi- bration analysis, and thermal imaging cameras have 

been developed to predict gearbox faults in wind turbines. SCADA data provides information on bearing 

temperature, oil temper- ature, vibration levels, and other sensor readings [5][11][27]. 

Vibration analysis involves collecting data on the vibration levels of the gearbox and other components [10][12], 

while thermal imaging cameras use infrared technology to measure the temperature of the bearings and other 

components in the turbine [28]. 

After the data is collected and finalized, different techniques like statistical analysis and machine learning 

analysis can be used to predict gearbox faults. Some common machine learning algorithms used for prediction of 

gearbox oil temper- ature from SCADA data are Deep Learning [15], Multilayer Feedforward Networks [16], 

Deep Neural Networks [17], Neu- ral Networks [18], Artificial Neural Networks [19], Support Vector Machines 

[20][21], Synthetic Minority Over-Sampling Technique [22], Manifold Learning and Shannon Wavelet Support 

Vector Machine [23], Multiscale Convolutional Neural Networks [24], Functional Trees Algorithm [25]. 

Machine learning algorithms have been shown to be effec- tive methods for predicting gearbox faults. The 

performance of different methods for predicting gearbox faults can vary depending on the quality and quantity of 

the data being analyzed, the complexity of the fault being predicted, and the accuracy and reliability of the 

analysis method being used. The use of rotor bearing temperature as a factor in detecting wind turbine gearbox 

faults is significant because it provides a clearer indication of the gearbox’s overall performance. Unlike oil 

temperature, which can be affected by a variety of external factors, rotor bearing temperature is directly linked to 

the gearbox’s functionality [30] 

By utilizing rotor bearing temperature as a key factor in detecting wind turbine gearbox faults, a clearer 

understanding of gearbox health is obtained. To ensure accurate and reli- able predictions, a thorough and well-

rounded approach that includes gathering quality data, utilizing strong analysis meth- ods, and rigorously testing 

and validating prediction models is necessary. 

 

METHODOLOGY 

The flowchart in figure 1 below provides an overview of the procedures followed in this research. 

A. Dataset Selection 

Dataset selected for this study contains 15 features of data along with a target (Rotor bearing temperature) and 

with 909604 data samples each. It is necessary to mention that the data contained in the dataset are 10 minutes 

averaged data. The parameters contained in the dataset along with its units is described in table I. 

B. Data Pre-Processing 

Data pre-processing is an important step in the analysis of data which depends on the specific data sources and 

the intended analysis, pre-processing steps used for this study has been mentioned below: 

 



BioGecko                                              Vol 12 Issue 03 2023  

                                                              ISSN NO: 2230-5807 
 

 

270 

A Journal for New Zealand Herpetology 

 

 
Fig. 1. Flow Chart of Proposed Approach 

 

1) Data Cleaning: Data cleaning involves identifying and correcting errors or inconsistencies in the data, such as 

missing values, duplicates, out of range, or incorrect data types. It is important to ensure that the data is 

complete and accurate before proceeding with the analysis. 

2) Data Transformation: Data transformation involves ap- plying various transformations to the data, such as 

scaling, normalization, or aggregation, in order to make the data more suitable for the intended analysis. It is 

necessary to scale the data to a common range in order to compare different features or to normalize the data to 

account for different units or scales. 

3) Data Reduction: Data reduction involves selecting a subset of the data that is relevant to the analysis which 

helps to reduce the complexity of the data and improve the efficiency of the analysis. 

4) Data Integration: Data integration involves combining data from multiple sources or sources with different 

formats, such as merging data from multiple SCADA systems or inte- grating data from different sensors. This 

can help to provide a more comprehensive view of the data and enable more advanced analyses. 
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TABLE I:DATASET  DESCRIPTION 

 

Sr.No Parameter Unit 

1 Time Stamp Sec 

2 Active Power calculated by 

converter 

KW 

3 Active Power Raw KW 

4 Ambient Temperature Degree 

Celsius 

5 Generator Speed RPM 

6 Generator Winding Temp Max Degree 

Celsius 

7 Grid Power 10min Average KW 

8 nc1 inside Temp (Temperature 

inside Na- celle) 

Degree 

Celsius 

9 Nacelle Temp (Temperature 

outside Na- celle) 

Degree 

Celsius 

10 Reactive Power calculated by 

converter (Secondary Power 

generated by wind tur- bines at 

output source) 

KVAR 

11 Reactive Power (Secondary 

Power gener- ated by wind 

turbines at input source) 

KVAR 

12 Wind Direction Raw Degree 

13 Wind Speed Raw Meter/Second 

14 Wind Speed Turbulence Meter/Second 

15 Turbine ID NA 

16 Rotor Bearing Temperature Degree 

Celsius 

 

Overall, data pre-processing is important to carefully con- sider the pre-processing steps that are appropriate for 

the intended analysis in order to obtain accurate and meaningful results. 

C. Model Selection 

Model selection is the process of choosing best model for a particular prediction task. Generally, model selection 

will be done by training different algorithms or configurations and then validating its performance using metrics 

like accuracy, precision or recall. Model selected for our work is K-nearest neighbour (KNN) regression and K-

means clustering. 

D. Regression 

1) K-nearest neighbour (KNN) regression: KNN regres- sion is a simple and effective non-parametric approach 

which works by identifying the K nearest data points to a given input point and using the mean or median of 

those points as the prediction. KNN regression will be more beneficial while working with complex or 

heterogeneous data like wind turbine SCADA data as it does not make assumptions about the underlying data 

distribution. Also, KNN regression is relatively easy to implement and does not require extensive pre-

processing or feature engineering when working with large and noisy datasets, making it best tool for 

identifying potential issues and optimizing maintenance schedules in a wind turbine. 
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2) Hyper parameter tuning: Hyper-parameter tuning is the process of adjusting the hyper-parameters of a 

machine- learning model to improve the model performance and to ensure the efficiency and accuracy of the 

prediction. KNN regression has variety of hyper-parameters like number ofneighbours (K), distance metrics, 

weighting function and methods to tune hyper-parameters like grid search. 

Number of neighbours (K) is a hyper-parameter which determines the number of nearest points to the query 

point are used to make a prediction. Greater value of K makes the model smoother but increase the risk of over 

fitting. Similarly, lesser value of K makes the model more complex and increase the risk of under fitting. So it is 

necessary to tune the value of K to an appropriate value to ensure the best results out of the KNN model. The apt 

value for K was chosen by plotting an elbow curve. The idea is to pick the lowest point in the curve, the point on 

the graph where we see an elbow shape, as the optimal value of K. Distance metrics is a hyper-parameter which 

determines the distance between points. Weighting function is a hyper-parameter used to assign weights to the 

neighbours, and any parameters associated with the weighting function. 

3) Model Evaluation: Model evaluation is the process of measuring the performance of a machine learning model 

on a set of test data. This is typically done by comparing the predicted output of the model to the true output, 

and computing metrics such as Accuracy, Mean Absolute Error, Mean Squared Error, Root Mean Squared 

Error, Median Ab- solute Error, Mean Squared Logarithmic Error, Mean Absolute Percentage Error. These 

metrics help to determine the effec- tiveness of the model and identify areas where it may need to be improved. 

Another way of model evaluation can be done by using histogram of residuals, which is a plot that shows the 

distribution of the residuals of a machine learning model. The residuals are the differences between the 

observed values and the predicted values of the model. The plot is used to assess whether the residuals are 

approximately normally distributed, which is an assumption of many machine learning models. If the residuals 

are normally distributed, the histogram should be roughly bell-shaped, with most of the residuals near zero and 

fewer residuals farther away from zero. If the residuals are not normally distributed, the histogram may have a 

different shape, such as a positive or negative skew, or multiple peaks. 

E. Classification 

1) K-means Clustering: K-means clustering is a widely used unsupervised learning algorithm for partitioning a set 

of data points into K clusters based on their proximity to the K centroids. The algorithm works by randomly 

selecting K initial centroids, and then iteratively updating the centroids and re-assigning the data points to their 

closest centroid until convergence. The objective of the K-means clustering is to minimize the sum of squared 

distances between each data point and its assigned centroid. K-means clustering is useful for SCADA data 

because it allows the data to be grouped into similar clusters based on their proximity to the centroids. These 

clusters can then be analyzed to identify correlations between variables and identify areas for improvement in 

the system. Additionally, the clustering results can be used for predictive maintenance and to detect anomalies 

or outliers in the data. 

2) Hyper parameter tuning: The main hyper-parameter in K-means clustering is the number of clusters (K) to be 

formed. The value of K determines the number of centroids and, therefore, the number of clusters in the data. 

Silhouette analysis, is one method used to determine the appropriate value of K, where we study the separation 

distance between the resulting clusters, to measure how close each point in one cluster is to points in the 

neighbouring clusters. Basically, we measure how similar an object is to its own cluster (cohesion) compared to 

other clusters (separation). Higher the silhouette value more well matched the object is to its own cluster and 

poorly matched to its neighbouring cluster. 

3) Model evaluation: Model evaluation for K-means clus- tering can be performed using the metrics specified in 

KNN regression’s model evaluation and also by using silhouette score. Additionally, visualizing the clusters 

using scatter plots can also provide insights into the quality of the clustering results. 

RESULTS AND DISCUSSION 

In this study, a dataset with 15 features was selected for the prediction of rotor bearing temperature. In data pre- 

processing stage, few features which is not necessary for further processing is eliminated like Turbine ID 

resulting in 14 features of data for further processes. A correlation heat map is shown in the figure 2 to visualize 
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the relationships between the parameters. 

 

TABLE IIHYPER-PARAMETERS  VALUES  OR  METHOD  USED 

 

Sr. No. Hyper-Parameter Value / Method 

Used 

1 Number of Neighbours 

(K) 

7 

2 Distance Metric Euclidean Distance 

3 Hyper-parameter Tuning 

Method 

Grid Search 

 

The table II shows the values chosen for the respective hyper-parameters. The values have been carefully chosen 

based on various factors and after performing various tests. The number of neighbours (K) was selected as 7 

based on the elbow curve shown in the figure 3. 

 

 
Fig. 3. Elbow Graph 

The distance metric was chosen to be Euclidean Distance, which is a measure of the true straight-line distance 

between two points in Euclidean space, being the default distance metric and most frequently used. To arrive at 

the best hyper- parameter metrics, while also performing various tests to determine the best values individually, 

we also used a hyper- parameter tuning method namely Grid Search to programmati- cally arrive at the best 

metrics. The above chosen metrics have been arrived by combining the results of both elbow curve and grid 

search methods. Various error metrics obtained by comparing the predicted value and true value has been listed 

in the table III. Based on the error values obtained, it is evident that the error values are low, acceptable and well 

within the range. 

 

TABLE III:ERROR  METRICS  TABLE 

Sr. No. Error Metrics Error Value 

1 Mean Absolute Error 0.9300 

2 Mean Squared Error 1.7776 

3 Root Mean Squared Error 1.3333 

4 Median Absolute Error 0.6970 

5 Mean Squared Logarithmic 

Error 

0.0007 

6 Mean Absolute Percentage 

Error 

0.01998 
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7 R-squared score 0.7397 

8 explained variance score 0.7424 

 

 

From the figure 4, it is clear that the histogram of residuals for the applied KNN regression is normally 

distributed with most of the points lying near to zero and following bell shaped curve. 

 
Fig. 4. Histogram of Residuals 

 

Rotor bearing temperature prediction with a accuracy of 98.002% has been acheived using K-nearest neighbour 

regres- sor. 

The next step after finding the rotor bearing temperature is to predict the fault using K-means clustering 

classifier. Here we have used Silhouette Analysis for programmatically identi- fying the best set of 

hyperparameters. The optimal number of 
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Fig. 2. Heatmap 

 

 

clusters (K) for the K-means clustering was determined based on the above method. 

 

TABLE IV:HYPER-PARAMETERS  VALUES  OR  METHOD  USED 

 

Sr.No Hyper-Parameter Value / Method 

Used 

1 Number of clusters (K) 2 

3 Hyper-parameter

 Tuning Method 

Silhouette Analysis 

 

The number of cluster(K) was selected as 2 based on the graph shown below in figure 5 
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Fig. 5. K means Graph 

Based on the silhouette score obtained, K-means clustering classifier has divided the whole data into 2 clusters 

and the cluster distribution has been indicated in figure 6. 

 

 
Fig. 6. Cluster Distribution 

 

The classification of the temperature data into healthy point and faulty point has been done and shown in the 

figure 7. 

 

 
Fig. 7. Fault results 
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In this study, we have achieved the classification based on the predicted rotor bearing temperature into normal 

condition and fault condition with a silhouette score of 0.6221. 

 

CONCLUSION 

We have established that the analysis of rotor bearing temperature data can play an important role in detecting 

faults in wind turbines. This study demonstrates the usefulness of K- nearest neighbor (KNN) regression for 

predicting rotor bearing temperature, the analysis performed and the model built has a high accuracy of 98.002% 

and low mean absolute error of 0.9300, with the residuals plot showing a normal distribution, thereby suggesting 

that the model is suitable for predicting rotor bearing temperature. The KNN regression results were used to 

identify potential gearbox faults through K-means clustering, with a Silhouette Score of 0.6221. This research 

highlights the potential of using KNN regression and K-means clustering for fault detection in wind turbine 

gearbox and provides a valuable tool for optimizing maintenance schedules and reducing the risk of unplanned 

downtime. 
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